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ABSTRACT

As a direct extension of Charnes' characterization of two-

s

person zero-sum constrained games by linear programming, ae*show&! -

"';J(:"Az‘ R IR Vi e

how a general class of saddle value problems can be reduced to

a pair of uniextremal dual separably-infinite programs. These

BTN S
33ode 5 g W /r‘:

programs have an infinite number of variables and an infinite

number of constraints, but only a finite number of variables

appear in an infinite number of constraints and only a finite

number of constraints have an infinite number of variables. The
conditions under which the characterization holds are among the

more general ones appearing in the literature sufficient to X
guarantee the existence of a saddle point of a concave-convex

function.

The key:construction involves augmenting a given player's
original:set Bf variables by generalized finite sequences
determined by the other player's constraint set and objective
funétion. A duality theory is developed which includes comple-
mentarity conditions, thereby making contact with the numerical

treatment of semi-infinite programming.

{

i \ 

Key Words. Polyextremal Problems, Saddle Values, Separably-
Infinite Programming, Generalized Finite Sequence Spaces, Moment

Cones, Duality and Complementarity.
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I. Introduction: Constrained Saddle Value Problems

In 1953, the first author in [3] showed how directly from
the data a bilinear saddle value problem with polyhedral
constraints could be replaced with a pair of uniextremal dual
linear programming problems. The basic saddle problem iQ the
following one. For a given m x n matrix A,

find max min p?Aq
pe]Rm qe]Rn

subject to
(1) (11)
m n
Zp. =1 Zq. =1
i=1 *t j=1 3
pD < at Bg > b
o 2. o a 2 'O,

where D is a mx r matrix, B is a 8 X n matrix,

e e——

The equivalent pair of dual linear programs is:

- R B R



I II
T . T
max a + yb min 6 + d'x
m 8 n r
aclR, peR, yeR 6eR, qeR , XeER
T T T, - + D o
aeny - P A+yB L0 ée(m) Ag x >
T T =
Pem =1 em? =1
pp  gd Bg > b
p,y 2 O q,x 2 0,

where e(n) consists of n ones, e(m) consists of m ones,

Charnes posed the problem of finding a similar reduction
of biextfemality to uniextremality, since for more general
gituations in many fields of physics, engineering, economics,
etc., one can easily obtain biextremal characterizations, although
no uniextremal principle is apparent.

While existing work of Danskin [7}, Gol'stein [12],
Rockafellar [15], Stoer-Witzgall [16] and others has shown how
to reduce the study of concave-convex saddle functions to pairs
of dual convex programming problems, except in the simplest of
cases when the internal extremizations can be explicitly carried
out, no reduction in the number of extremizations has been
accomplished. And, as the work of Bracken, Falk, and McGill [1]
and Bracken and McGill [2] shows, explicit analysis and computation

of such convex programming problems with embedded extremizations
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is neither transparent nor facile. Thus, while such constructions
may be useful in establishing important general properties of
the saddle value problem, with them, as Poincaré miéht say, the
problem posed is "very little solved".

By means of a new construct, "separably-infinite programming”
[6], we have solved the problem for a general kind of separability

and a "functional" bilinearity in the saddle function* which is
equivalent to:
find sup inf(g(p) + pTAq + h(q)}
PEP qeQ

where P and Q are arbitrary closed convex sets

in R and IRn, respectively, and where g is concave and h

is convex.
We show that this nonlinear polyextremal problem is equivalent

to a pair of uniextremal dual separably-infinite programs under
assumptions which are among the most general ones appearing in
the literature for saddle value problems.

Our solution to this nonlinear saddle problem actually
rests upon finite linear programming methods in the sense that
when appropriate finite discretizations are made of the problem,
than an approximate solution is obtained by solving the classical
constrained game case. The bridge between the finite linear
programming problems so obtained and the infinite structure of

the original nonlinear saddle problem is a class of generalized

*By this we mean saddle functions of the form

" o

where g; is closed concave on R™, { = 1,...,m h. is closed

convex on JRn

, 3=1,...,n%, and a;jy 20 for all i and j.




F Y

finite sequences, as employed in the theory of semi-infinite
programming. Generalized finite sequences permit the finite
discretizations themselves to vary freely, as a class of
probability measures with finite support subject to variation.
In this sense we obtain linearizations of the nonlinear poly-
extremal problem.

As in the classical two-person zero-sum game and its con-
strained game extension, our approach does not require the
specification of any perturbations which for example, in a func-
tional transform approach would necessarily be required in
advance of duality developments. As in elementary finite linear
programming, one need not be concerned about perturbations for
duality purposes. They are handled automatically.

In this context we show that the decision vector set of one
player is augmented by generalized finite sequences determined by
(a) , the additional convex constraints on the other player's
variables and (b), the objective function or its "epigraph"
defined over the other player's original decision vectors. Thus,
player 1I's variables shall consist of the p-vectors plus
generalized finite sequences determined by linear inequality
representations of player II's constraint set Q and player II's
objective function h, The situation is a direct extension of
the duality obtained in the finite and classical constrained
game case. We illustrate the construction with a simple numerical
example in an economic context.

The particular approach to the study of saddle value problems

provides the opportunity for numerical treatment by semi-infinite
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programming methods [11], [13]. 1In particuzlar, the authors
in [6) have developed a system of nonlinear equations obtained
from separably infinite duality relationships to which Newton type
methods apply.

We now formally introduce tne polyextremal problems and set

forth the main assumptions upon which our apsoroach is based.

SR ..-u«-w.j
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% 2. Assumptions and Definitions Underlying the Polyextremal

Problems

The problem data are the following.

(i) a closed concave function g in m variables, peR™,
(ii) a closed convex function h in n variables, qentn,
(iii) an mXx n matrix A, |

(iv) an explicit closed convex constraint set for the p-

variables given in linear inequality form,
. "~

—_ m_T m .
P={peR |pd(a) £ d ,(a), d(a)eR", d ,,(0)eR,

for all a in a set 8},

and
(v) an explicit closed convex constraint set for the g-

variables given in linear inequality form,

n T n
Q = {qeR"|b(B) g 2 b ,,(B), b(B)eR", b ., (B eR
for all B in a set 8}.

In this paper we investigate the following two polyextremal

J problems:

find Vy = sup inf{g(p) + pTAq + h(q)}

PEP geQ .
and
¢
i. find Vy = inf sup{g(p) + pTAq + h(q)}.
, geQ peP
'
Y As a closed convex set in IR X DRm, the hypograph of g,

((po,p) € IR X nam|po £ g(p))}, can be characterized by a system

Sk e e e P I & B Y e Ul i vﬂql-’egﬁrf& g
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of supporting hyperplanes of the form:
T
{(p,sP) € R X ]levo(o)po + v(o)'p £ vy ,,(0), vioer™,
vo(o), vm+1(o)eIR, vo(a) >0 for all ¢ in a
set J}. (1)

The epigraph of the closed convex function h,

e, S T ——————————.  S———————

((qo,q) € IR X IRnlh(q) (< qo] can be characterized by a system

of the form:

((a,,@ € B x Ru (Ya, + w(v) a2 u . (V), a(ner™,

uo(Y), un+1(y)eJR, uo(Y) > 0 for all{ Yy in a set u}. (2)

Definition. A supporting hyperplane of (1)
v (o)p. + V(O)Tp =v_ . .(0)
o o m+1l

is termed a domain constraining vertical hyperplane if and only

if vo(o) = 0, v(o) # 0 and a positive multiple of v(o),
: Ve (0) equals d(a), dm+1(a) for some acR. [In general O
‘ shall indicate a zero vector of appropriate, compatible dimension.]
Similarly a domain constraining vertical hyperplane in (2)
is one which is a positive multiple of the vector bDb(B), bn+1(B)

for some BeS8.
The following assumptions will prevail throughout the paper.

'
. .. Assumption 1. Domain g NP # @, domain h N Q0 # @, and the

! following subsets of P and Q respectively are non-empty,

,.I
. £ - ”




P = (P N dom innf[pTAq + h(q)} > -}
qeQ

Q_ = (@ N dom h|sup{g(p) + p'Aq) < +m].
@ peP

Assumption 2. Any vertical hyperplane in either of the supporting

hyperplane systems (1) or (2) is é&cmain constraining.

Assumption 3.1. The convex cone in R X R™ x R generated by

{VO(O),V(O) ’—Vm+l(0)]oe3 U [o’d(u)’-dm+l(a)}aeﬁ U {059‘:"’1]

is closed.

Assumption 3.2. The convex cone iz R X RO x R generated by

(g (V) ,ulv)s-up 5 (V) J ey, U (0,B0B,-D,,, (B ) g g U (0,0,1)

is closed.

We turn now to the main construction of this paper, namely
obtaining two dual infinite linear programs stemming from Vy

and VN.
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3. Constructing Separably Infinite Programs from the Polyextremal

Problems

Program I. Find V; =

sup § Y(B)b 1(B) + Zu L (NANY) +p
Y

(8)

from among (p,,p) € R X RrR™, yeRr s Aem(u), generalized

finite sequence spaces, subject to
T _
prd(a) d1n+1(°L)’

PoVo(0) + B v(0) < v, (0),

z v(eb(eT + 2 aum® - pTA =0T

~

Y

Z Ay)u_(y)
Y o

y >0, A>O0. (8)

In general, a generalized finite sequence space with respect

to a set W, denoted ]R(w) s is the linear space of all real valued
functions on W having only finitely many non-zero images.
Program I is a special case of Program P of the Appendix,

whose dual D becomes Program II (in the notation of Program I).
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;
Program II., Find Vip =
inf q, + 2 A4 (@) x(a) + g Vit () n(0) (9)
from among (qo,q) € R X Rn, xem(a), 7ER (3) |
subiject to
(8 "q 2b_,1(8), all ped (10)
- u (Ma, + v’ | 2w, q(v), all veu (11)
u v, (o)n(o) =1 (12)
o
-Aq + I d(a)x(a) + Z v(o)n(o) =0 (13)
a o
and
x>0, m>o0. (14)

According to the duality developments reviewed in the
Appendix, see also [6), Programs I and II satisfy the duality
inequality, namely if [(po,p),y,A] is 1I-feasible and

[(qo,q),x,n} is 1I1I-feasible, then
g y(B)b, . ,(B) + 5 u (MY + py

L4, +Zd (ax(a +Zv ,(c)n(0). (15)
a c

Vm

The next task is to develop relationships between peP°°
introduced in Assumption 1 and feasible lists ((posp),y,k] of

Program I, and similarly for Program II., Actually, these

relationships are needed in order to establish inequalities




among all four program values, Vs Vﬁ, Vi and VII'

Lemma 1. Assume that Po is not empty and that Assumption 3.2

SR

holds. Then

. (1) any peP,, is extendable to a feasible list {(p,,p),y,M}

of Program I, and

(ii) if [(po,p),y,X] is any I-feasible list, then PeP ., .

In particular, Program I is consistent.

Proof, (i) Let pePoo and assume to the contrary that it is

not extendable, This assumption implies that the following

program is inconsistent:

Program A

V.

A = Sup g Y(B)b 1 (8) + Zu . (¥IA(Y)
Y

subject to

Zy(B)b(B) + I u(y)A(y)
B Y

Z u_(y)A(Y)
; y °

Yy 20,

and A2 O.

The dual to the above program is:

. Program B
' V, = inf q_ + pTAq
‘ B o
\ subject to o(B)Tq > b, (8), all pes (16a)

u(Ma, +umTe 2 Uy (YD
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The inequalities (16a), (16b) are consistent because domain
h NQ#¢@ and the fact that (16b) is a supporting hyperplane

representation of the epigraph of h. Furthermore, for any

feasible (q,,q) we have
T. T, . T
d4, + P'Aq 2 h(q) + p'Aq 2 inf(p'Aq + h(q)) > -
qeQ
since peP, . Therefore, V, is finite. It therefore follows
from the closure of the moment cone determined by (16a) and (16b)

(Assumption 3.2) that Program A is consistent, which is a

contradiction. Therefore any PEP is extendable to a feasible
list for Program I.

(1ii) Assume that [(S;,E),;;X] is 1I-feasible and assume to
the contrary that kaoo' Nevertheless, (l16a) and (16b) are
consistent for the same reasons as above in part (i), but now
Vg = - (since EZPOO by assumption). In this case the closure
of the relevant moment cone (Assumption 3.2) implies that Program A
is inconsistent. However, setting y = ;, A=A yields a
feasible list for A, which is a contradiction. It therefore

follows that pePoo.

The completely symmetric and analogous result holds for
Program II under Assumption 3.1 with respect to the set Q0 .
We shall therefore view this case as also part of the statement

of Lemma 1. The next lemma presents what we shall term "poly-

i extremal duality inequalities."
'
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i lemma 2. Let Assumptions 1, 2, and 3 prevail. Then
' vy < sup inf(g(p) + p'Aq + h(@)) < Vg
P Q
and

A Vv; < inf sup(glp) + pTAq + h(@)} < Vige

F Q P

i

F’ In particular, Vi and Vyy are finite valued.
: t‘ Proof. Since Pa) # @, 1 is consistent by Lemma 1, and so let
Yo

{(po,p),y,A] be any I-feasible list. It suffices to take

Given any q € Q N doam h, set q, = h(q). Multiplying (6) through |

e et ey -

by g and using (10), (11) and the non-negativity of y,\ yields:

pAq = § v(8)b(B) Tq + = A(y)uly)Tq
Y

2 g y(8)b_ ., (B) + 5 2 (NA(Y) - $ u, (Y g A (y).

B et 4> vtttk e

But the term to the right of the ineguality is

Ly, (B + 2y (VMY - hia),
Y

using (7). Therefore,

9EB) + Zy(Bby, (B) + 2w (VA < 9lp) + p'Aq + h(q). (17)
Y

i ' Since the q employed in (17) was arbitrarily chosen in
1

Q N dom h, it follows that
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g(p) + gy(a)bnﬂ(a) + Zu L(IAMY) L ingtg(p) + p'Aq + h(g)}. (18)
Y qe

Therefore, (18) holds for every {(po,p),y,xl feasible for I
and hence by Lemma 1, for every pePoo. Therefore,

T.

v, < sup inf(g(p) + p'AQ + h(q)} = sup inf(g(p) + p'Aq + h(q)), (19)

pePoo qeQ PeP qeQ
the latter equality stemming from non-emptiness of Po-

On the other hand (17) yields an inequality on the respective
suprema, namely,
v; < sup{g(p) + p'Aq + h(q)}
peP
for each geQ. Hence

v; < inf sup(g(p) + p'Aq + h(q)}. (20)
geQ peP

A completely analogous development involving Program II
and Qoo # ¢ yields:
(a), the analog of (19) namely

vy; > inf sup(h(a) + p'Aq + g(p)], (21)
gqeQ peP

and

(b), the analog of (20) namely

Vip 2 sup inf(h(a) + p'Aq + g(p)}. (22)
peP qeQ

The set of inequalities (18), (19), (21), and (22) give the

required statements of the lemma.
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4. The Main Duality Theorems

We are now ready to translate the duality results given in

the Appendix to Programs I and II. First, we introduce the two
convex cones stemming respectively from the linear inequality
representations of the convex sets P and Q.

cP is the convex cone spanned by

da(a) o
U ’ (23)

while CQ is the convex cone spanned by

b(B) o
U . (24)

Theorem 1. Let Assumptions 1-3 prevail. Assume that

T
(PgsP) € R X r™, p ¢ o'p, (g0™) (p) > P,s and ( A'p) ¢ o
po

implies (po,p) = 0.

Then vI = = V.=V and V. .is a maximum.

YmM = Y5 T Vi1 I
Proof. By Lemmas 1 and 2 it follows that both Programs I and II
are consistent and finite valued. The theorem is a specialization
of Theorem Al in the Appendix and so the main task is to define

T
A

the sets (a) o"'KQ and (b) [yelle( b}; ) € cs} used in (Al)
Y

there for Program I. The fact that the only vertical hyperplanes
permitted in support systems of the functions g and h are
domain constraining will also be used.

The recession cone in (a) becomes the set of those

(PgsP) € R X R™ which satisfy

pivincinsieetincdin,
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pla(a) < 0, all ok (25)
and
povo(o) + pTv(c)‘g 0, all oe3. (26)

Now (25) is equivalent to p € o'P while (26) is merely
(p,sp) € 0+(hypo g). Since O (hypo g) = hypo(go), (26) is

equivalent to

(90+)(p)‘2_p°.

Translating the set specified in (b) into the context of
Program I becomes those (po,p) € R x R™ for which there

exist yelR(S), )\eIR(u), welR satisfying ’

0 = Z u (Y)A(Y) ' (27)
Y .
aTp = gb(ama) + I u(y)AlY) (28)
Y
Py = -g P (BY(B) - Zu L(Y)A(y) + w (29)
Y

and y 20, A20, w2oO,

The task is to show that any (po,p) satisfying (25)-(29)
must necessarily be O wunder the hypotheses of Theorem 1 above.
Observe that uo(y) 2 0 for all vyeu, and therefore
AMy) = 0 when wu,(Y) > 0. Thus (27) is eliminated and some of
the variables in (28) and (29). We now take care of those A(Yy)

for which wu (y) = o.

Let U = {yeu] u,(Y) = 0}. As observed above, (28) becomes

aTp = gb(a)ym) + T oulyINY). (30)

Yeu,
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By Assumption 2 for each yeub there exists a positive scalar

kY and some B8 such that

kYu(Y) = b(B).
For each Bec8, let
8g = (veu, | there exists k, > 0, ku(y) = b(B)]). (31)

Then U SB = uo, even though some SB may be empty. By taking
B

" £ " to mean " z ", a finite sum, we rewrite
yed (YIA(Y)#0,8 78, Ye8 5]
B B
(30) as
aTp = T (g iy(p) + & 2y, (32)
B Y€3B Y
Similarly (29) becomes
A
p,=-Zb (B y(B) + L AMY)) 4 w, (33)

Together (32) and (33) imply

ATp
e C

o (34)

Po
while we are also given that p € ot and (go+)(p) 2 Py
According to the fourth assumption in the theorem it must be
the case that (po,p) = 0. Therefore by Theorem Al, Program I
is consistent, V

=V and vy is a maximum. Applying

1 II

Lemma 2 yields VI =Vy = Vh =V

i1’




Yo

Corollary 1.1. .The cone QQ is closed.

Proof. Suppose (a,am+l) e R" x R is a limit point of the
cone Cb. Then it is a limit point of the entire cone specified
in Assumption 3.2, which is closed by assumption. Hence there
is an expression of (Q,a,am+1) as the left-hand side of the
equations (27), (28), (29) in terms of the right-hand side

as indicated. The above algebraic argument then applies to

show completely analogous to (34), that (aa ) € qQ'
m+1l

Another corollary of Theorem 1 is. the following complementary
slackness result, which is merely a translation of Theorem 2 of

l6] in the context of Programs I and II,

Corollary 1.2, Let [pf),p*,y*,x*] be optimal for Program I and

{q:,q*,x*,n*] be optimal for Program II. Then
x*(o.) [d(a)Tp* - dm+l('a)] = 0 for all oqeR (35)
y (8) [b(B) 7" - b ,1(B)] =0 for all Be8 (36)
7 (o) [p:vo(o) +p v(o) - vo+1(0)] = 0 for all ce3  (37)
A [y (Ve + ulnTa” - u, (¥ = 0 for all veu. (38)

As Theorem 2A is a companion to and actually a corollary of '

Theorem 1A, we obtain the natural companion to Theorem 1.
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Theorem 2. Let Assumptions 1-3 prevail. Assume that

(4,0 € R x R", q e 0%, (n0")(a) < q,, and

Aq
€ Cp implies (q,,9) = O:
9,
Then VI = Vh = VN = VII and vII is a minimum.

Analogous to Corollary 1.1, the cone CP is also closed.

Theorem 3. Let Assumptions 1-3 prevail. Assume

(1) pe o', (0")(p) 2p, and

A'p

€ Cb implies (po,p) =0
Po

and

g

(i) qge 0'Q, (h0)(a) < q, and

Aq
€ C, implies (qo,Q) = 0,
9

' . * * * *
Then I has an optimal solution {p ,g(p ),y ,A } and II
has an optimal solution [q*,h(q*),x*,1f} and for any such solution

p*,q* is a saddle solution,i.e.

\'/

* XD * *
M= Vy=9(Pp) +p Aq +hiq).

Proof. By Theorems 1 and 2 optimal solutions exist and by
Corollary 1 equations (35)-(38) are satisfied.

Analogous to the proof of Lemma 2 we see that
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p g = : Yy (Bb(B) g + £ A (yuyTd. (39)
Y
Applying (36) and (38) to (39) yields -‘

* T

P AT = Iy (b, (B) - q + z U (DA (1) -

Adding p: = g(p*) to both sides and transposing qz = h(q*),

we obtain

* *Pp * *
g(p) +p Aq + h(q)

E y (BB, (8) + Zu_ (VN (Y) +pr
Y

Theorem 3 is the main saddle value theorem of the paper.

The conditions underlying Theorem 3 and Theorems 1 and 2 are

among the common ones in the literature which guarantee finite
saddle-values and existence of saddle-points for the case when
the sets P and Q are unbounded. Roughly speaking when
conditions prevail to guarantee saddle points, then each of our
dual separably-infinite programs will have optimai solutions.

We briefly review some of the conditions in the literature.
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5. Relation of the Assumptions of Theorem 3 to the Literature

Among rather general conditions sufficient for guaranteeing

a saddle-point are (a) and (b) of Theorem 37.3 in Rockafellar [15].
; These conditions apply to more general concave-convex saddle

functions than the particular one we have studied, namely
— T
K(p,q) = g(p) + p"Aq + h(q)

for (p,q) € P x Q.
On the other hand, our theorems go beyond a saddle-point
result, namely showing the equivalence of a saddle-value solution

to the solution of two dual separably-infinite linear programs.

In the context of our saddle function, condition (a) of
Theorem 37.3 is equivalent to our fourth assumption in Theorem 2.

In the case at hand, condition (a) relates to directions of
recession of the convex function K(p,*), where peP. A direction

of recession of this function, say g, satisfies

P —

paq + (ho*) (3 < o.

Condition (a) states that

PTAE + (h0+)(a)‘$ 0 for all p e ri?P (40a)
implies p = O. (40b)
i Now in (40a), ri P may be replaced with P, and hence by
'

Lemma 1 of the Appendix, (40a) is equivalent to
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Ag
€ cl C..

(ho™) (@) P

By Corollary 1.1, CP is closed, and it is now straightforward
} to check that Assumption 4 of Theorem 2, namely: (g € O+Q, .
(ho) (@) < 0 and

Agq

€ CP implies (qO,q) = 0,
9

is equivalent to condition (a) of Theorem 37.3 [15].

Similarly, condition (b) is equivalent to the fourth
assumption of Theorem 1.

In the more general context of infinite linear programming
Fan introduced related asymptotic conditions and proved them to

be sufficient for duvality theorems, [9].
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6. A Simple Example of an Equilibrium in Economics

The following example is related to work of Charnes

and Cooper, Charnes and Carey, and Charnes and Thore concerning
equiiibria in resource value-transfer economies [4] and private
ownership economies of Debreu type [8].

Let p; and p, ‘denote reéﬁectively the price of a con-
sumer good and wages paid for work done to produce the single
good. As an output the consumer good Yy ghall be non-negative,
‘. while the single input Yo shall be non-positive. The set of
possible (yl,yz) combinations shall be termed the production

set Y, and shall be taken to be:

A

Y = {(y)5¥,) € R21y1 <Y-v3, ¥, £ 0.

A system of linear supports for Y is the following:

((yys¥)ly; + v Y2 3-21- VY-o for all a < 0}. (41)
a

2 /-
The consumer shall be guided by a potential function of

Pl:pz, given by

E(pl’pz) = vpl - 1/3 Pz'

For a given list of positive prices (Si,Eé) it shall be assumed

that the consumer demands

OE

_ - _ 1 1
i. . Spl (pl’pZ) =3
)

of the consumer good, (42)

A

while he is willing to supply




1

~
hae timd s

l%f;; (p,.8)| = |-51 = 1/3 (43)

units of labor. (Supply is taken to be a negative number.)
Taking h(pl,pz) = “E(Pl’Pz)’ we may consider the following

support systeml for the epigraph of the convex function h:

(qo’pl’Pz) ’

i 1 1 i
qo+912W’3922 VY , for all v > 0. (44)

Viewing the producer as a profit maximizer we consider the

following polyextremal problem for the economy.

Find Vy = s;p igf PyYy * PyYs —'Vpl + 1/3 Py
2 2 . .
from among yeR ", pelR gatisfying

Yls V"Yz )
y2_§0 and 9120, 9220-

Let us now give the dual separably infinite programs

appropriately identified with the producer and consumer respectively.

Producer'!s Separably Infinite Program (I)

Find V., = sup Z —'% Y A(y) from among yenzz and A (45)
a

a generalized finite sequence on Il(>o) which satisfy

At this point we are not insuring that the relevant moment cones

are closed as for example if (41) and (44) were canonically closed,
see [10], p. 12, and [15], page 200.
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and

51’5220: sto: A2 0.

An optimal solution to (I) is:

%* *

»* * * * ¥*
Y =3/, V(y)=1, AN(y) =0 for YFY, § =§E=0,

and

VK

_ * _ 1 .
Yl = » yz - - 3 Wlth VI - 4 .

\3
Observe that the producer does not need to know the specific

prices which the consumer will select.

Consumer's Separably Infinite Program (II1)

. 1 2
Find Vyy = inf q  + a'([.o -2-V~a x(a) from among pelR and (50)

x a generalized finite sequence on IR(<0), which satisfy

(51)

1 --Lpzz—'izi,forall y> O

qc:"'p].zw/'; 3
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and

P

P
and

PysP5 2 0, x 2 0. (53)
An optimal solution to (II) is:
o = m% , x*(a*) = 3/4, x*(a) =0 for a# «
and
313

s

* * .
Py = 3/4, py="g— , with V ;=

Note that the consumer's problem determines the full set

. *  *
of prices PysPy.

Producer consumer equilibria is checked as follows.,

Producer Equilibrium., Taking prices p; = 3/4 and p; = 3}53 »

the producer seeks

* *
nax PyY; + pPoY,
subject to Yy S\,'Yz’ Y < 0.

This problem has a unigque solution 91 = and 92 = —9? = —% .

1
V3

Since 91 = y; and §b = y;, the producer is in equilibrium,




Consumer Equilibrium

According to (42) and (43), at prices p;,p; the consumer
demands
OE * 1 1
Fp_. (P]_:Pz) =
1 2\/5{ V3
and is willing to supply (a2 negative number by convention)

OE * ® 1
35'2- (Pl’Pz) = -3

. OE * * * OE P »
Since 35: (PysPp) = y; and 35; (Py5Py) = ¥y, the

consumer is also in equilibrium.

An important conclusion from this simple example is that
each of the problems I and II has its own individual character.
The basic purpose of the producer's problem I is to determine
outputs and inputs. It may derive implicitly some or all of the
optimal prices of outputs and inéuts. Determining the full set
of prices is however, the main thrust of the consumer's problem II.

Moreover, the parametric form of each player's decision
vector in terms of generalized finite sequences has an economic
interpretation. For the producer, (47) says that an output-
input vector y must be a convex combination of the consumer's
vectors of demand and supply, VE(Y). For the consumer, (52) says
that the price vector p should be a convex combination of

vectors normal to the frontier of the production set.




7. Conclusions
In this paper a new approach has been developed to solve

polyextremal problems, specifically the "maximin" and "minimax"

variety. Conceptually, the procedure is to decouple or de-
centralize the jointly defined problem into two dual separably
infinite programs. These infinite programs possess special
structure amenable to numerical treatment by semi-infinite
programming methods, and do not involve any internal extremizations.

Basically the structure requires an augmentation of each
player's original variables by generalized finite sequences
determined by the other player's information sets. The conditions
under which the polyextremal problem may be solved by two dual
linear programs are among the most general appearing in the
literature, permitting for example, unboundedness in each of
the explicit constraint sets,

The procedure has been illustrated in the solution of a
simple producer-consumer polyextremal economy, where the producer
seeks to maximize profits and the consumer seeks to minimize
expenditures while achieving some implicit satisfaction level.
Each of the two players has his own separably infinite program.
The producer's program determines optimal inputs and outputs,
while the consumer's program determines optimal prices of inputs
and outputs without specific knowledge of the producer's optimal
decisions. Thus, each player modifies his choices in the light

of constraints and goals associated with the actions of the other

player, but he does not require knowledge of the other players

choice itself.

e e e AT




The example was motivated by work of Charnes and Carey,

Charnes and Cooper, and Charnes and Thore on problems of economic

?

%

E

- equilibrium. Further work is planned in this area, in particular,
1 ; .

interpreting the assumptions underlying the saddle value theorems

s in this paper in the context of private ownership and resource
value transfer economies., Additional applications are envisioned

in physics and engineering.




Appendix: An Extension of a Duality Result of [6] 30

The duality theorems of this appendix could be derived

as corollaries of infinite linear programming results of Fan

: [9]. We present a simple derivation based on elementary

separation in finite dimensions, Consider the following dual

et vt

. e

pair of separably infinite programs.

Program P, Let S _ng, Q SR{' and let u(*) : s -bRn,
m n m
uni-l(') : S *R, v(*) : Q ? R, vm+1(') : Q » R, ceR, beR
and A ¢ Rmxn.
. - . T
" Find Vp = sup téisun_,_l(t)?\(t) - by
| from among A(-) € r(S) and y:R" which satisfy
T u(t)M(t) - ATy = ¢ (12)
: teS
T 1b
vi(r)y £ vm+1(r) for all reQ (1b)
and
AMt) 20 (1lc)
and
Program D
. T
Find V. = infcx + X v (r) n(xr)
_——— D reQ m+]
from among teR"  and n(s) < R(Q) which satisfy
T
u (t)x > un+1(t) for all teS (2a)
- Ax + Z v(r)n(r) = -pb (2b)
YeQ
n(*) 2 0. (2¢)

- R I O . - e -’ £ . . . . . -
) . _ P ’ L -
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The following convex sets will be used in the duality

developments.

K, = {yeR™ Iv (rd)y < v Ve (¥) for all reQ},
Kg = {xeRnIuT(t)x 2,un+1(t) for all teS),

is the convex cone generated by

c
v{r) o]
reQ) Ul | .
Ve (F) -1
C

c Rn'ﬁl is the convex cone generated by

u(t) 0
teS) U ’
n+1(t) 1

CS and C are often called moment cones.

The following lemma is known but its proof is included

for completeness,

Lemm:. 1. Assume that K.Q and Kg are non-empty.

Then

(12) (%) € c1 ¢, (closure of Cy) if and only if w'g<h

for all weKQ

and

(1b) (9) € cl C, if and only if wlg > h for all weK
-h s

sl

Proof. The proof of both parts is similar, so (1lb) is proven.

We first show for fixed gen!n, heR that the following statement
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"weR®, w e R ng - w h>o {3a)
? Tn+l ’ n+l
whenever
T
wiu(t) - wn+1un+l(t) 2 0, for each teS (3b)
and w__. 2 o" (3c) i
is equivalent to
" n T
welR™, wg>h (4a)
whenever
wTu(t) > un+1(t), for each teS". (4b)

To prove the equivalence assume the first statement
[(3a)-(3c)] and let weRD satisfy (4b). Merely setting

Wb = 1 yields that (-u-:,'u-:n+l) satisfies (3b) and (3c) and hence

by (3a)
Tn-Tg -~ h > 0 proving (4a).

Let us now assume the second statement to be valid. Let
Tu'e]Rn, 'Gn_‘_lem satisfy (3b) and (3c). We wish to show (3a)

holds. Two cases arise.

Case 1 Wi+l > 0., In this case w = w/wn+1 satisfies (4b) and
hence by assumption must satisfy (4a) which in turn implies

wig - w ,;h 20, i.e., (3a) holds in this case.
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Case 2 :&+l = 0. In this case EFu(t) 2 0 for each teS.
Since Kg is non-empty there exists GeKs, and so it follows that

G + Mw satisfies (4b) for M arbitrarily large. Therefore,

by assumption,
A - T s
(w + Mw) g > h, for any positive M. (5)

But it follows from ( 5) that Tn'Tg 2 0, which is (3a) for
this particular case. Therefore in this case also we have shown
(3a) holds whenever (3b) and (3¢) do. Hence the first statement
follows from the second, and they are therefore equivalent.

An infinite version of the Farkas Lemma states that
g
() € el G

if and only if (3a) holds whenever (3b) and (3c) hold, see [15]).
The equivalence established above provides the equivalence

required in the statement of the lemma.

For a given non-empty convex set K, the recession cone
of K, denoted o'k is the set of all vectors y such that
X + Ay ¢ K for every A > O and xeK, see [15). For a linear
transformation A, the subspace of all vectors =z such that
Az = 0, is termed the kernel of A and denoted ker A.

With these preliminary definitions we are ready to prove

the first of two symmetric theorems.

Theorem Al. Assume that Program D is consistent and finite

valued and that the convex cone Cs is closed. Let the following

assumption prevail




T
Aly
(A1) o+xQ n {yemr™| (_pTy) € Cg) = (o).

Then Program P is consistent, Vp = VD,'and Vp is a maximum.
Proof. Program D can be written in the following form.

Find Vp = inf z

from among xeRn, n(*) e R(Q), zeR, weR which satisfy

uT(t)x Z-un+1(t) for all teS

Ax v(r) ¢] b
T + z E‘n( ra + E.w]::
c'x reQ —Vm+l(r) -1 -]

n(+) >0, w2 o0,
This is equivalent to the following form.

Find VD = inf z

from among xeR”, zeR which satisfy

X € KS
b - Ax -8
€ —C.. . ,
z - ch Q

Let us define the set 'R,g r™H

_ b - Ax
K = xeK and z < V. .
z - ch D

Since KS is convex, K 1is also convex. Now Vb is the value

of Program D. Thus there cannot be an XeK and z < VD

b - Ax )e -c

S such that

zZ - C X
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Hence

K n(-co)f 2.

Since K and -Cy are disjoint, non-empty convex sets,
we can find a hyperplane that separates them ([16] Theorem 3.3.9
or [15]) Theorem 11.3). That is, there exist yeRm and

Yp+1 € R, not both zero, sucb that

d
T
y'd + ym+1dm+1 2 0 for all (d )e 'qQ (6)

and

or al xeK, and z < VD. (7)

-v{r) 0
Now vm+1(r) € -CQ for all reQ and 1€ -CQ. Thus (6)

implies that
-yTv(r) + Ym+1vm+1(r) 2 0 for all reQ (8)

Yne1 2 O

We consider two cases on the value of Ym+1®

Case 1 y, ., > O. We may take Yoty = 1 Then (8) and (7) yield:

T _
yv(r) £ Vh+l(r) for all reQ (9)
and
T T
y (b- Ax) + (z - ¢'x) £ 0 for all xeKs and z < VD.
- -~ N . - ToNme LS e - P . T
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This last inequality can be written as

xT(ATy + ¢) Z_bTy + 2z for all xeKg and z < Vpe

i By Lemma 1(1lb), this is equivalent to

ATy + c
(-bTy . € cs for all z < Vpe
Since CS is closed,
- ( ATy + c
-bTy i Vb € CS.

Thus there exist a A(*) € R(S) and weR which satisfy

ATy + ¢ = £ u(t)a(t) (10)
tes
T =
-y - v = tfs - u L (BA(E) +w (11)
A-+) 20 and w 2> O. (12)

From (9), (10), (12) it follows that y,A is feasible

for Program P, and hence X u__ (EYA (L) - bTy < V,. But the
t n+l P

I . . T .
. duality inequality [VP g_vb] and Vp S'E un+l(t)k(t) - by :

from (11) and (12) combine to show that VP is indeed a finite

i maximum equal to V.




Case 2 Yp+1 = O- It follows from (8) that

yTv(r) £ 0 for all reQ. (13)

According to the definition of Kb, (13) means that y € O+Rb.

On the other hand in this case, (7) becomes

yT(b - Ax) £ 0 for each xeKg. (14)

Applying Lemma 1, (1lb), to (14) implies

ATy

-bTy

since CS is closed by assumption; Hence

T
% n Ay
yeo Kb y -bTy € CS

and therefore by assumption (Al), y = 0. Hence Case 2 cannot

happen because (y,y ) # 0. Therefore only Case 1 can occur,

m+l
completing the proof of Theorem 1.

Theorem Al has a companion starting with consistency of

Program P, It can be proved by rewriting P as a minimization

under appropriate variable changes and applying Theorem 1.

. Theorem A2. Assume that Program P is consistent and finite

valued and that the convex cone CQ is closed. Let the following

property prevail,

Ax

‘e + n -
' (A2) 0 'Kg N§ xeR I € Cyp = {o}.

]" Then Program D is consistent, V, = Vps @nd V. is a minimum.
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